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Abstract--This paper addresses the problem of estimating void fraction during upward cocurrent 
two-phase flow in annuli. To model the slip between the phases and the transition between the various 
regimes, the drift-flux approach is adapted. In analogy to flow behavior in circular conduits, four major 
flow regimes--bubbly, slug, churn and annular--are recognized. Expressions for void fraction in bubbly, 
slug and churn flow regimes are derived from the relationship between the phase velocities. The flowing 
mixture densities calculated from these expressions are useful for pressure gradient calculation. The 
annular flow regime was not investigated in the present work. The predictions of the proposed method 
for flow pattern transition and void fraction are compared with experimental data gathered for this work 
as well as from independent sources. Good agreement between experimental observations and the 
predictions is noted. 
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I N T R O D U C T I O N  

The importance of multiphase flow to the chemical and petroleum industries has led to proposals 
of many models and correlations for void fraction and pressure gradient estimation. Most of these 
studies, however, have been made with circular flow channels. In this work the relationships for 
void fraction in terms of phase velocities and system properties are developed for two-phase flow 
through annuli. The upper limit for the flow regime is then established from the hydrodynamic 
conditions that gives rise to the various flow pattern transitions. 

In two-phase flow the static head, gPm, is quite often the major contributor to the total head 
loss, especially for vertical and near-vertical systems. Consequently, an accurate estimation of the 
gas void fraction, e (/n situ volume fraction of the gas), is required because the mixture density, 
Pm, is directly proportional to it. The frictional head loss also requires an estimate of the mixture 
density and, hence, the gas void fraction, as do such surface properties as interfacial mass and heat 
transfer coefficients. 

This paper first discusses the experimental setup used to gather data, which is followed by the 
development of expressions for the void fraction in each flow regime. Validation of such 
developments with our data and those from independent sources is discussed thereafter. 

E X P E R I M E N T A L  

A 5.5 m high transparent column was constructed, using a 127 mm i.d. Plexiglas tube to gather 
data on gas void fraction. Air was fed into a stagnant water column through four side entrances 
at the bottom of the column. To avoid entrance effects, measurements were taken about 3 m away 
from the gas inlet. A schematic of the experimental set up is shown in figure 1. Rahman (1984) 
showed that the entrance effect in this setup diminishes as the pressure drop measurements are made 
farther away from the inlet, indeed, measurements at various points in the column (1.83, 2.44 and 
3 m away from the inlet) suggested that, other than random errors, there was no difference in the 
data gathered at the last two stations. 

The void fraction in the test section was determined from the pressure drop measured 
between two points. An estimated frictional component, which never exceeded 1% of the total 
pressure drop, was subtracted from the total pressure drop before calculating the void fraction. 
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Figure 1. Experimental setup for measuring void fraction. 

The superficial air velocity achieved in our setup varied between 0.0066-0.2 m s -t. The system of 
manometers used allowed measurement of the void fraction down to 0.001. The absolute accuracy 
of the measurement declined at higher gas flow rates due to manometer fluid level fluctuations. A 
number of duplicate runs were made, which indicated good reproducibility of the experimental data 
(Rahman 1984). 

Three different inner tubes, with 48, 57 and 87 mm o.d., were used with the outer 127 mm i.d. 
tube to gather pressure drop data in annular geometry. The bubble rise velocity data, both for small 
bubbles and large Taylor bubbles, were gathered by determining the time required for bubbles to 
traverse a 3 m section of the pipe. Taylor bubbles were introduced by suddenly opening and closing 
an air inlet line. Each bubble rise velocity data set represents an average of 20 measurements, A 
complete description of the experimental setup and procedure and the accuracy and reproducibility 
of the data are detailed elsewhere (Rahman 1984; Hasan et al. 1988). 

In addition to the data gathered from this column, void fraction and flow pattern transition data 
from several other sources were used in this analysis. Details of the operational conditions for these 
data are shown in table 1. 

Data  
source 

Table 1. Experimental conditions of the data used to verify the proposed method 

Diameters Pressure Temperature vs Vso 
(mm) Fluids (kPa) (°C) (m s - i )  (m S-1) E 

Present work o.d. = 127 Air R oom pressure Room temp. 0 0.008-0.20 0.01-0.52 
i.d. = 48, Water  
57 & 87 

Caetano o,d. = 76 Air 200-430 13-40 0.002-3.05 0.0125-14.69 0.04-0~97 
(1984) i.d. = 42 Water  

Air 320-400 4-26 0.03-2.4 0.029-t0.7 0.04-0,97 
Kerosene 

Sadatomi et  al. (1982) o.d. = 30 Air R oom pressure R o o m  temp. 0.10-2.00 0.09-15.24 0.1-0.89 
i.d. = 15 Water  
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BUBBLY FLOW 

For bubbly flow, the dri•flux approach provides a simple method for modeling the in situ 
velocity of the gas phase relative to that of the mixture. The in situ gas velocity, v~, is influenced 
by the tendency of the bubbles to flow through the central portion of the pipe, where the local 
mixture velocity is greater than the cross-sectional average velocity. In addition, the density 
difference between the phases gives rise to a drift flux, which adds a velocity equal to the terminal 
rise velocity of the bubbles, v~ (Zuber & Findlay 1965; Hasan 1988a; Hasan & Kabir 1988a,b; 
Aziz et al. 1972), to the lighter phase. Thus, 

V O ~--" VSG/E = Col)  m Jr- V ~ ,  [1] 

where the flow parameter, Co is related to the bubble concentration and velocity profiles (Wallis 
1969). 

Equation [1] may be rearranged to arrive at the following expression for the gas void fraction 
in terms of the superficial phase velocities: 

E = I)SG/(CoI)m "~- V ~ ) .  [21 

The terminal rise velocity depends on the surface tension, a, and the fluid densities, PL and PG, 
and appears to be well-represented by the Harmathy (1960) correlation: 

v~ = 1.53[g~r(p L -- pc)/p2] °'25. [3] 

If one assumes that the lighter phase flows entirely through the channel center, then it can 
be shown that the flow parameter, Co equals the ratio of the channel center velocity to the 
cross-sectional average velocity. For turbulent flow, the velocity profile for most of the pipe cross 
section is quite flat, and the mixture velocity at the axis of the pipe is 1.2 times the average mixture 
velocity. Although not all the bubbles flow through the central portion of the channel, very 
few flow close to the wall; and 1.2 has been found to be a reasonable value for Co for flow 
through circular channels. 

An exception to this value of 1.2 for Co occurs for bubbly flow in large-diameter pipes 
(>  100 mm) with standing liquid columns due to liquid recirculation. In our earlier work (Hasan 
et al. 1988) we reported a value of 2.0 for Co for such a system, in agreement with the works of 
Zahradnik & Kastanek (1979), Haug (1976) and Mashelkar (1970). Clark & Flemmer (1986) 
presented a slight modification of the drift-flux approach, which suggests a Co value of 2.0 for 
large-diameter stagnant liquid columns. 

The analysis leading to [2] also applies to flow through an annular space such as on the shell side 
of a shell-and-tube heat exchanger or in the tubing/casing annulus of an oil well. It would, however, 
be necessary to identify any functional dependency of Co and voo with the diameters of the channel. 
To establish this relationship, both terminal rise velocity and void fraction data were gathered with 
an outer tube and three inner tubes of varying diameters, using air and water as the fluids. 

The terminal rise velocity appeared not to be significantly affected by either the inner tubes 
or the channel deviation from the vertical. The negligible effect of inner tube diameter on bubble 
rise velocity is not very surprising because the rise velocity of a bubble in an infinite medium 
[as represented by the Harmathy (1960) equation] has also been found to apply to pipes. The 
influence of pipe diameter becomes significant only when the diameter of the bubble becomes more 
than 20% of the channel diameter (Harmathy 1960). Presumably, if we had used a significantly 
larger inner pipe so as to reduce the annular gap, we may have observed decreased bubble rise 
velocity. Our earlier work (Hasan & Kabir 1988b) also demonstrated that a pipe deviation of up 
to 32 ° from the vertical did not seem to affect the rise velocity of small bubbles. This appears to 
be the case for annuli as well. 

The void fraction data gathered from our experimental setup was then used to determine the 
effect of various system variables on the flow parameter, Co. 

Effect of  pipe inclination 

A typical set of the void fraction data gathered is shown in figure 2 for a 127 mm o.d., 87 mm 
i.d. annular system for channel inclinations of 58 ° and 90 ° from the horizontal. The solid line 
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Figure 2. Comparison of theory with experiments in bubbly flow in an air-water system, data from this 
work. 

represents [2] with the rise velocity calculated from the Harmathy (1960) equation and Co = 2.0. 
The linear relationship observed between in situ gas velocity, vc, and mixture velocity, Vm, in 
figure 1, supports the applicability of [1] to annular geometry. Note that the pipe inclination does 
not appear to affect the void fraction in bubbly flow. We observed in this study, as well as in our 
earlier work (Hasan & Kabir 1988b; Hasan 1988b), that Co in bubbly flow in circular channels is 
not dependent on the pipe inclination. 

Effect of annular dimension 

The presence of an inner tube does not appear to influence the bubble concentration profile. 
The value of Co for annuli was found to remain essentially the same as that for a circular channel. 
This is in contrast to the findings of Hasan & Kabir (1988a) who noted a slight increase in Co with 
the inner-to-outer tube diameter ratio. For the large-diameter system used in this study with 
stagnant water, Co was found to be 2.0, in agreement with our circular channel data and those of 
Zahradnik & Kastanek (1979), Haug (1976) and Mashelkar (1970). We believe that for smaller 
tubes (i.d. < 50 mm) the value of Co would be 1.2. 

Bubbly /slug flow transition 

For circular channels, Hasan & Kabir (1988a,b) and Griffith & Snyder (1964) experimentally 
verified the theoretical contention of Radovich & Moissis (1962) that the transition from bubbly 
to slug flow occurs at a void fraction, Et, of about 0.25 in vertical pipes. We found this transition 
to take place at the same void fraction in annular geometry as well, in agreement with Kelessidis 
& Dukler (1989). This criterion, Et = 0.25, may be used to relate the superficial phase velocities using 
[2] as follows: 

VsG = (C0VsL + V~)/(4 -- Co). [41 

Although for an inclined pipe we found that the terminal bubble rise velocity remained essentially 
unchanged, [4] requires some modification before it can be applied to the bubbly/slug transition 
in an inclined channel. In an inclined pipe, the gas phase tends to flow preferentially along the 
upper wall of the pipe because of gravity. Consequently, the local void fraction at the upper wall 
exceeds the e t value of 0.25, even though the cross-sectional average void fraction is well below the 
transition value. 

Assuming that the gas velocity at the upper portion of the pipe is higher by a factor of 1/sin 0 
(ratio of actual to projected flow area) compared with the cross-sectional average value, Hasan 
(1988b) and Hasan & Kabir (1988b) arrived at the following expression for the transition from 
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bubbly to slug flow for inclined systems: 

Vs~ = (C0VsL + v~o)sin 0/(4 -- Co). [5] 

Equation [5] shows good agreement with the data reported by Caetano (1984) for air-water and 
air-kerosene flow in a vertical annular channel, as shown in figure 3. Even though a good overall 
agreement is attained between the predictions of [5] and experiments, figure 3 suggests that [5] 
slightly overestimates the transition Vsc, meaning that transition to slug flow occurs at a lower 
(E ~ 0.18) void fraction in Caetano's system. A similar observation was also made in Caetano's 
(1984) work. Note that for the air-kerosene system, the bubbly/slug transition boundary lies 
slightly to the left (i.e. lower VsG) compared with that for the air-water system. The boundary shift 
is a direct consequence of the 25% lower value of v~ for an air-kerosene system compared with 
that of an air-water system. 

The data of Sadatomi et al. (1982) for air-water flow in annular and rectangular vertical channels 
also appear to agree with [5]. In addition, we note that the Kelessidis & Dukler (1989) equation 
for the bubbly/slug flow transition, supported by their data, is very similar to [5]. 

Dispersed bubbly f low 

At higher flow rates, shear stress caused by turbulence tends to break up the larger bubbles, 
inhibiting the transition to slug flow even when the void fraction exceeds the value of 0.25. 
The onset of dispersed bubbly flow, resulting from such dispersion of larger bubbles, was analyzed 
by Taitel et al. (1980) and Shoham (1982). Caetano et al. (1992a) adapted this transition criterion 
for annular channels using the equivalent diameter D e ( = D o -  Di) and obtained the following 
expression: 

2(Vm)l'2(f)O'4(2/De)O'4(pL/f)O'6[O.4a/(pL -- pG)g] °'s = 0.725 + 4.15(VSG/Vm) °'s. [6] 

We also recommend the use of [6] for predicting the onset of dispersed bubbly flow in vertical 
and inclined annuli. At high phase velocities, a characteristic of this flow regime, neither the pipe 
diameter or the inclination angle is likely to influence the transition to dispersed bubbly flow. 
Thus, if the mixture velocity is greater than that given by [6], bubbly flow will persist even when 
the void fraction is >0.25. However, Taitel et al. (1980) point out that for small gas bubbles, 
the gas void fraction cannot exceed a value 0.52. At higher void fractions, transition to slug (or 
churn) flow occurs. The data of Caetano (1984) show that although [6] overestimates the superficial 
liquid velocity at which the transition to dispersed bubbly flow occurs in a vertical annulus, the 
overall agreement is reasonable. An expression similar to [6] was also proposed by Kelessidis & 
Dukler (1989). 

For estimating the void fraction in dispersed bubbly flow, we propose to use [2] with Co = 1.2 
and v~ as given by the Harmathy (1960) equation. Dispersed bubbly flow is thus treated similarly 
to ordinary bubbly flow. A number of researchers have used a homogeneous flow approach in 
calculating the void fraction and pressure drop in a dispersed bubbly flow regime. However, we 
believe that although the large superficial velocities involved in dispersed bubbly flow make the 
fluids more homogeneous, the gas phase still flows mostly through the channel center at a velocity 
higher than the average mixture velocity. 

SLUG FLOW 

Application of the drift-flux model to slug flow is more complicated than in bubbly flow because 
of the different drift velocity of the small bubbles in the liquid slug compared with that of the 
Taylor bubbles. Assuming that the liquid slugs do not contain any gas bubbles, Hasan (1988a,b; 
Hasan & Kabir 1988a,b) arrived at the following expression for the gas void fraction using VolT 
for the rise velocity of a Taylor bubble in an annulus: 

£ = V s G / ( C I V  m "b rooT) , [7] 

where CI is the flow parameter, analogous to Co in bubbly flow. Because the gas phase content 
in the liquid slug is usually a small fraction of the total gas phase, and the difference in the drift 
velocities in the slug and the Taylor bubble is usually not very high, Hasan & Kabir (1988a, b) were 

MF 18/2--1 
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able to use [7] to correlate void fraction data in slug flow from several sources with good accuracy. 
Still, using the Taylor bubble rise velocity, which is generally higher than the small bubble rise 
velocity, for the entire slug flow will cause slight underestimation of the void fraction. 

To account for the difference in the drift flux between the liquid slug and the Taylor bubble, 
a number of rigorous hydrodynamic models have been advanced for circular channels (Sylvester 
1987; Fernandes et al. 1983). Caetano et al. (1992b) have successfully extended this approach to 
a vertical annular channel. As Vo & Shoham (t989) pointed out, in addition to requiring the 
solution of a set of eight equations for eight unknowns, such an approach requires an assumption 
or an empirical relationship for the gas void fraction in the liquid slug. 

In this work we simplify the "cellular" approach pioneered by Fernandes et al. (1983) for circular 
channels for adaptation to annuti. Figure 4 shows a model "cell" of length L, consisting of a 
Taylor bubble of length LT and a liquid slug of length Ls. Denoting the in situ gas fraction in 
the Taylor bubble portion by ET and that in the liquid slug portion by q, we arrive at the following 
expression for the average void fraction for the cell: 

E = ( L T / L ) E  T q- (Ls /L)G.  [8] 

We use [7] for the Taylor bubble portion of the cell for calculating 6T. Note that this is not strictly 
valid because [7] is really applicable for an entire cell containing nothing but a Taylor bubble. 
However, our intention is to approximate the effect of two different drift fluxes within the cell, and 
not to attempt a rigorous estimation of the contributions of the two portions of the cells separately. 
Equation [8] may be viewed as a modification of [7], correcting the underestimation of void fraction 
given by [7]. 

A number of approaches (Fernandes et aL 1983; Sylvester 1987) have been suggested for 
estimating the liquid slug void fraction, including a recent model presented by Barnea (1990). We 
adapt a simpler approach by noting that the circular channel data of Akagawa & Sakaguchi (1966) 
show that the average volume fraction of gas in the liquid slug (based on the total system volume, 
i.e. GL~/L)  is approximately equal to 0.1 when VSG > 0.4 m s -1 and is equal to 0.25Vsc for lower 
superficial gas velocities. Assuming that this approximation also applies to annular channels, we 
rewrite [8] as follows: 

6 = (LT/L)tT + 0.1 for Vsc > 0.4 m s-J [9a] 

and 

E = (LT/L)Ev + 0.25Vso for Vsc < 0.4 m s -l. [9b] 

For Vsc>0.4ms -~ an expression for the fraction L T / L [ = I - ( L J L ) ]  may be derived by 
applying [2] for the gas void fraction in bubbly flow to the liquid slug and noting that it is equal 
to 0.1. Thus, 

(L~/L )q = (L~/L)vsc/(Co Vm At- Uoo ) = 0 , 1  [10a] 

o r  

Ls/L  = 0.1(C0vm + Vo~)/VsG. [10b] 

Similarly, for VsG < 0.4 m s i we obtain 

L s / L  u 0 . 2 5 ( C 0 v  m + uce) ' [11]  

We point out again that [10a,b] and [11] do not give actual estimates of the relative sizes of the 
liquid slug and the Taylor bubble. As noted by a number of researchers (Fernandes et al. 1983; 
Sylvester 1987; Caetano et al. 1992a,b; Barnea 1990), the length of a liquid slug depends on a 
number of system parameters and fluid properties. Instead, [10a,b] and [11] in combination with 
[7] and [9a,b] allow one to calculate the gas void fraction in slug flow, provided values of the flow 
parameter, C1, and the Taylor bubble terminal rise velocity are available. 

Following the classical work of Nicklin et al. (1962), the Taylor bubble rise velocity in vertical 
circular channels, V~T, in slug flow is written as 

GoT = C2x/gD(pL - PG)/PL ~ C ~ .  [12] 
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Figure 4. Schematic of a model "cell" in slug flow in 
an annulus. 

Extensive data and theoretical analyses by a number of researchers indicate that, although 
influenced by the forces of inertia, viscosity and surface tension, the values of C2 remains constant 
at 0.345 for many practical systems. Barnea & Sbemer (1986) have provided theoretical justification 
for this experimental value for (72, as obtained by Griflith (1964) and Sadatomi et al. (1982). 

For slug flow in inclined circular channels, Bendiksen (1984), Hasan (1988b) and Hasan & 
Kabir (1988b) found that the value of CI remained constant at 1.2. However, they observed 
significant variation in the terminal rise velocity of a Taylor bubble with deviation of the pipe from 
the vertical. As the pipe is deviated from the vertical, the nose of the Taylor bubble becomes sharp, 
causing a reduction in the drag force with a consequent increase in the rise velocity. However, when 
the pipe is highly deviated, the reduction in the buoyancy force offsets the reduction in the drag 
force, causing a decrease in the rise velocity compared with that for a vertical pipe. The variation 
in the Taylor bubble rise velocity with the pipe inclination was given by Hasan & Kabir (1988b) 
and Hasan (1988b) in the following manner: 

v~zo = V ~ T ~  0 (1 + COS 0) 1"2. [131 

Hasan & Kabir (1988b) noted good agreement of [13] with the circular channel data of Runge 
& Wallis (1965) for most inclination angles, the exceptions being data from pipes inclined by ~<20 ° 
from the horizontal. Note that [13] predicts zero rise velocity for Taylor bubbles in horizontal 
systems, while some researchers have noted a nonzero rise verocity in horizontal pipes (Weber 
et al. 1986). Other approaches for estimating V~TO in inclined pipes are available (Maneri & Zuber 
1974; Bendiksen 1984). However, because of the reduced importance of void fraction in calculating 
the pressure drop in near-horizontal systems, refining V~TO estimation for such systems is perhaps 
unwarranted. Indeed, Hasan & Kabir (1988b) showed good agreement between experiment and 
theory for both void fraction and pressure drop data for inclination angles of /> 20 ° in circular 
channels. Thus, we propose a limiting inclination angle of 20 ° for [13]. In the following, we discuss 
the effects of annular dimension and pipe inclination on the flow parameter and the Taylor bubble 
rise velocity as given by [13]. 
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Effect of annular dimension 

The approach used in bubbly flow to determine the effect of annular dimension and pipe 
inclination on the flow parameter can only be used in slug flow if [7] alone is used to estimate the 
gas void fraction. In such a case, VsG/E has a linear relationship with Vm, with a slope of C]. 
Although imprecise, this approach indicates that the flow parameter, C,, is not significantly 
influenced by either inner tube diameter or pipe inclination. Thus, we propose to use a constant 
value of 1.2 for C~ for all cases of slug flow. We note that Hasan & Kabir (1988a) found C] to 
vary slightly with the inner-to-outer pipe diameter ratio. Use of a different expression for the rise 
velocity in the earlier work probably explains the difference. 

The presence of an inner tube tends to make the nose of the Taylor bubble sharper, causing an 
increase in the rise velocity, V~T. The Taylor bubble rise velocity data gathered for the present work 
agreed with the suggestion of Griffith (1964) that the diameter of the outer tube should be used 
in [13] for estimating V~T in the annulus. Our Taylor bubble rise data show a linear relationship 
with the diameter ratio, Di/Do, suggesting the following expression for the Taylor bubble rise 
velocity for vertical annular systems: 

V~Ta = [0.345 + 0. l(Di/Do)]%/gDo (PL -- PG)/PL' [14] 

Effect of pipe inclination 

The effect of pipe inclination on the rise velocity appears to be well-represented by the correlation 
for circular channels, [13]. Thus, combining [13] and [14], we arrive at the following expression for 
the Taylor bubble rise velocity in inclined annuli: 

V~TOa = [0.345 + O . I ( D i / D o ) ] ~  (1 + cos O)l2x/gDo(PL -- Pc)/PL. [15] 

Figure 5 shows a good agreement of the Taylor bubble rise velocity predicted by [15] ( ) with 
our data. However, this figure also suggests that when the channel is highly deviated from the 
vertical, [15] appears to overestimate the effect of inclination. Because our system could not be 
deviated by more than 32 ° from the vertical, no attempt was made to modify [15] further to account 
for this overestimation. 

We note with interest that Griffith (1964) also observed a similar variation in V~T~ with annular 
diameter, although his data indicate a weaker dependence of this parameter on Di/Do. In contrast, 
Sadatomi et al. (1982) presented data and a general approach for estimating the Taylor bubble rise 
velocity in various noncircular vertical channels, in terms of the equiperipheral diameter, Dep, as 
follows: 

V~T~ = 0.345~/gDop(pL -- Pc)/PL" [16] 

The equiperipheral diameter is defined as the wetted perimeter of the channel divided by re, which 
is equal to the sum of the annuli diameters, D~ + Do, for an annulus. Agreement of their correlation 
with their data from annuli is less satisfactory than with data from other channels. The average 
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errors in predicting the v~Ta data of Caetano (1984) for the Sadotomi et al. (1982) correlation are 
+ 6.8% for the air-water system and + 10.52% for the air-kerosene system. Our correlation [15] 
predicted the same data with average errors of -2 .09 and + 1.46%, respectively. 

For estimating the Taylor bubble rise velocity in vertical systems, vo0Ta, Hasan et al. (1988) 
recommended using [14] with the equivalent diameter, Dc (=Do-  Di), in place of the outer pipe 
diameter, Do. However, they did not actually measure the Taylor bubble rise velocity. Instead, they 
based their correlation on the best fit for their void fraction data to [7]. The lower estimate of the 
bubble rise velocity was balanced by an increase in C~ with the diameter ratio, Di/Do, leading to 
a reasonable prediction of the void fraction. In view of the observed increase in the Taylor bubble 
rise velocity in an annulus, however, the expression proposed here is to be preferred. 

The predictions using [14] of the rise velocity data reported for vertical annular channels by 
Caetano (1984), Sadatomi et al. (1982) and Griflith (1964) are shown in figure 6. The agreement 
appears to be quite good. 

Slug/churn flow transition 

Because of the chaotic nature of churn flow, gathering data for this transition as well as 
modeling the transition is subject to error. Models based on the "flooding" phenomenon appear 
to be inapplicable at high pressures (Hasan & Kabir, 1988a). Moreover, Weisman & Kang (1981) 
showed the discrepancy in data and empirical correlations from a number of sources. Therefore, 
no attempt was made to delineate this transition for annular geometry. Instead, we suggest that 
the model proposed by Brauner & Barnea (1986) for circular channels be used for the transition 
to churn flow even for annuli. This criterion suggests that the transition to churn flow occurs 
when the gas void fraction in the liquid slug following the Taylor bubble exceeds 52%. The 
Brauner-Barnea approach may be superior to the other correlations as it appears to account for 
the effect of the pipe inclination on this transition. Barnea et al. (1985) and Brauner & Barnea 
(1986) have noted that even a slight deviation of the pipe from the vertical greatly reduces the 
occurrence of churn flow and that the flow regime vanishes entirely when the pipe is deviated by 
more than 20 ° from the vertical. 

CHURN FLOW 

The churn or froth flow pattern has not bean investigated extensively because of its chaotic 
nature. However, the analyses presented for bubbly and slug flow should also be applicable for 
the churn flow pattern. Thus, the equations developed for predicting void fraction in slug flow 
([7]-[11]) are used for the churn flow regime. Equation [7] was also suggested by Fernandes et al. 
(1983) for circular channels and by Kelessidis & Dukler (1989) for annuli. Although the bubble 
shape is quite different from the classical Taylor bubble, the bubble rise velocity during churn flow 
is probably not much different from that for slug flow. In addition, because the mixture velocity 
is much higher than the bubble rise velocity during churn flow, a slight error in estimating v~r~ 
does not significantly affect void fraction estimation. 
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On the other hand, an accurate estimation of  C1 is very important for predicting void fraction. 
The bubble concentration profile in churn flow may be dissimilar to that for slug flow because of  
the characteristic churning motion of  this flow regime. Using [7] with root given by [12], Has, an 
(1988a,b) analyzed the void fraction data, gathered by Ney (1968) and Fuentes (1968) for vertical 
circular channels in the churn flow regime, and concluded that a value of  1.15 was appropriate for 
the parameter C,. We, therefore, propose to use [8] for estimating the void fraction in churn flow 
in annuli with C, = 1.15 and VolTa as given by [15] in an annular system. 

Trans i t i on  to annu lar  f l o w  

The transition from churn (or slug) to annular flow was not investigated experimentally in the 
present work. Instead, the approach adapted by Taitel et  al. (1980) for vertical circular channels, 
based on the drag force necessary to keep the entrained liquid droplets in suspension during annular 
flow, is used here for annular geometry as well. At the high velocities associated with annular flow, 
Weisman & Kang (1981) and Barnea et  al. (1985) observed that the orientation of  the system has 
little effect on the transition to annular flow. We extend the concept to annular geometry and 
propose using the Taitel et  al. (1980) equation for the transition to annular flow. Thus, 

VSG = 3.1 ~ / t r g ( p  L -- p G ) / p  2 . [17] 

Figure 3 shows good agreement between [17] and the experimental data gathered by Caetano 
(1984) for both air-water and air-kerosene vertical systems. Because the system operating pressure 
and temperature have a profound impact on the fluid properties of  density and interfacial tension, 
the transition superficial velocity as given by [17] will change markedly. Consequently, the tran- 
sition boundaries, shown in figure 3, would move depending upon the operating conditions, Such 
movement of  boundaries was illustrated by Taitel et  al. (1980) for two different system pressures. 

We note that the complicated model for the transition to annular flow presented by Kelessidis 
& Dukler (1989) is very close to that proposed by [17], as was pointed out by Kelessidis (1986). 
Thus, we retain [17] for simplicity. 

C O M P A R I S O N  WITH P U B L I S H E D  DATA 

Published gas void fraction for two-phase flow through annular geometries are scarce. Caetano 
(1984) gathered void fraction, pressure drop and flow pattern data for air-water and air-kerosene 
two-phase flow through an annulus with a 72.6 mm i.d. outer tube and a 42.16mm o.d. inner 
tube at room temperature and a pressure of  about 3 atm. We compare the predictions of our 
method against this data set. Note that the flow pattern observed by Caetano et  al. (1992a) is 
used here. 

Table 2 presents statistical information regarding this comparison in terms of the average error 
and standard deviation in the prediction of data in each flow regime. The average error, 4, is defined 
as the sum of  the errors, ei, divided by the number of data points, n (~ = ~ e i /n) .  The error is the 
difference between the predicted and experimental values of  the liquid holdup, 1-e. Thus, a positive 

Table 2. Statistical comparison of the proposed method's predictions using 
Caetano's (1984) data 

Slug 
Flow regime Bubbly Dis. bubbly [7] [9a,b] Churn 

Air-Water Data 
Average error 0.022 0.043 -0.028 0.041 -0.005 
Average % error 2.400 5.000 -6.450 7.040 
Std dev. 0.040 0.049 0.072 0.063 0.033 
% Std dev. 4.070 5.020 12.700 8.100 

Air-Kerosene Data 
Average error 0.013 0.003 0.052 0.047 0.026 
Average % error 1.900 0.600 10.900 9.930 
Std dev. 0.034 0.018 0.061 0.057 0.043 
% Std dev. 3.980 2.160 6.900 7.200 a 
aAverage percentage error and percentage standard deviation are not computed for 

the data in churn flow because of the very low liquid holdup values of some of 
the data in this regime. 
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average error indicates overestimation of the liquid holdup by the proposed method. The standard 
deviation, ~r, is defined as the square root of the sum of the squares of errors divided by (number 
of data - 1) [a 2 = (Z  e~)/(n - 1)]. 

Figure 7 presents the liquid holdup predictions of the proposed method for the bubbly flow data 
of Caetano (1984) for the air-water and the air-kerosene systems. General overestimation of the 
liquid holdup is evident for both fluid systems, although agreement is much better for the 
air-kerosene system. 

The air-water bubbly flow data were predicted with an average percentage error, defined 
as (1/n)100Z (ei/(1--£experiment)), of 2.4%. The percentage standard deviation, defined as ap = 
100 Z ( e ~ -  ~)2/(n - 1), is 4.07% for these data. The model proposed by Caetano et  al. (1992b), 
which contains a parameter optimized by using the data set, predicted the same data with an 
average percentage error and percentage standard deviation of -0 .46  and 4.75%, respectively. 
Two data points in this set are suspect because the liquid holdup for these data points are 
actually lower than the value the homogeneous model would predict, suggesting that the liquid 
has a higher in si tu velocity than the gas. Our method predicted the air-kerosene bubbly flow data 
of Caetano with an average percentage error of 1.90% and a percentage standard deviation of 
3.98% compared with -2 .17 and 5.21%, respectively, for the Caetano et  al. (1992b) model. In this 
set there was also at least one datum that suggested a higher liquid in si tu velocity than that of 
the gas phase. The general overestimation suggests either a lower value of Co or a lower v~o for 
annuli. 

The dispersed bubbly flow data of Caetano (1984) and their predictions by the proposed method 
are shown in figure 8. The air-water liquid holdup data in this flow regime are also generally 
overestimated, on average by 5.0% compared with an underestimation by 1.67% if the homo- 
geneous model is assumed (i.e. E = Vso/Vm), as proposed by Caetano et  al. (1992b). However, as 
pointed out earlier, treating the dispersed bubbly flow as homogeneous may not be sound because 
it assumes a value of 1.0 for Co when most of the bubbles still flow through the core of the channel. 
The air-kerosene data of Caetano appear to support this contention; our method predicts these 
data with an average error of 0.60% and a standard deviation of 2.16% compared with -3 .84  
and 2.93% for the homogeneous model. 

The slug flow liquid holdup data of both air-water and air-kerosene systems, shown in 
figure 9, are also overestimated by the proposed method. Our method ([9a,b]) overestimates the 
air-water slug flow data by 7.04% and the air-kerosene data by 9.93%, while percentage standard 
deviations for these two sets of data are 8.1 and 7.2%, respectively. These higher values of the 
percentage errors reflect the generally lower value of liquid holdup, rather than any inaccuracy in 
predicting the absolute value as indicated in table 2. 

As table 2 shows, the predictions of the simplified approach ([17]) suggested by Hasan & Kabir 
(1988a,b), in which all the gas is assumed to have the same drift flux as that of the Taylor bubbles, 
are very similar to the predictions of the method proposed here. Considerations of the different 
drift fluxes in the Taylor bubble and the liquid slug, as proposed here, reduced the standard 
deviation by only 0.01 for the air-water data and by 0.004 for the air-kerosene data. However, 
the rigorous slug flow model developed by Caetano et  al. (1992b) predicted the liquid holdup data 
for both systems somewhat better. Caetano et  al. predicted the air-water slug flow data with 
~p = 3.94% and ap = 7.72%; and the air-kerosene data with ~p = 5.8% and ap = 9.97%. This 
superior prediction is partly due to the fact that the model proposes separate approaches for 
developed and developing Taylor bubbles, and that the model was developed from the Caetano 
data set. Holdups of 80 and 85% in the liquid slug for the air-water and air-kerosene systems, 
as used by Caetano et  al. (1992b) may not always be applicable. 

The comparison for the churn flow data is shown in figure 10. The low value of the average 
error supports the lower value for the parameter, C1, as proposed in [7]. Average percentage error 
and percentage standard deviation are not reported for these data because liquid holdup values 
of many of the data in this flow regime are very low, resulting in percentage errors that exaggerate 
the inaccuracy of the method. No correlation was proposed by Caetano et  al. (1992b) for this flow 
regime. 

Figure 11 compares the predictions of the proposed method with the air-water data Sadatomi 
et  al. (1982) collected, using a 30mm o.d, 15mm i.d. annulus. We predicted the gas void 
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Figure 11. Predicting the void fraction in bubbly, slug and churn flow, data of Sadatomi e t  al. (1982). 

fraction in all flow regimes in this data set with an average error of 0.023 and a standard deviation 
of 0.0214. 

A good agreement between the Sadatomi et al. (1982) data and our predictions can be noted 
in figure 11 in the slug and churn flow regimes. The bubbly flow void fraction data are slightly 
underestimated (i.e. liquid holdup is overestimated), as in the case of the data of Caetano (1984). 
A lower value of the terminal rise velocity of small bubbles (about 0.08 m s-t instead of 0.24 m s- 
as used in this analysis) would make the predictions agree very well with the data. This would also 
be true of the bubbly flow data of Caetano (1984). It is possible that for the small-diameter pipes 
used by Sadatomi et al. (1982), the terminal bubble rise velocity of small bubbles is actually lower, 
perhaps being affected by the pipe walls. However, Sadatomi et al. did not provide small-bubble 
rise velocity data to verify this point. In addition, the annulus used by Caetano (1984) is too large 
for the above argument to be valid, although Caetano did not provide small-bubble rise velocity 
data either. Additional data with varying annular dimension are needed to clarify this point. 

DISCUSSION AND CONCLUSION 

This paper presents the flow pattern approach to predicting the void fraction in bubbly, slug and 
churn flow regimes in both vertical and inclined annuli. Transitions from one flow regime to 
another are also discussed. The method is based on the relative motion between the gas and liquid 
phases, caused by the density difference between the phases and the tendency of the gas phase to 
flow through the central portion of the channel. The terminal bubble rise velocity accounts for the 
buoyancy effect, while the effect of the bubble concentration profile is accounted for by using the 
flow parameters, Co and C]. 

The terminal rise velocity for bubbly flow appears to be unaffected by annular geometry and 
was well-represented by the Harmathy (1960) equation. However, the data of Caetano (1984) 
and Sadatomi et al. (1982) suggest a somewhat lower value for the bubble terminal rise velocity. 
The Nicklin et aL (1962) correlation was found to be adequate for the Taylor bubble rise velocity 
in the slug and churn flow regimes when the increase in the rise velocity with the inside-to-outside 
diameter ratio of the annulus and the inclination of the channel was accounted for. 

The flow parameters in bubbly, slug and churn flow, Co and C~, appear to be unaffected by 
the annular dimension. Values of Co and C1 appropriate for circular channels are, therefore, 
recommended for annuli. 

The transition from bubbly to slug flow was observed to occur at a void fraction of about 
0.25 for both annular and cylindrical geometries. The difficulty in predicting the transition to 
churn flow was pointed out. Use of model proposed by Taitel et al. (1980) for the transition from 
churn to annular flow was suggested in this work. 

The proposed method was compared with data from several sources. The good agreement 
between the data and the predictions lends support to the soundness of the method presented. 
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